Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612533

RESUMO

Colorectal cancer (CRC) screening relies primarily on stool analysis to identify occult blood. However, its sensitivity for detecting precancerous lesions is limited, requiring the development of new tools to improve CRC screening. Carcinogenesis involves significant alterations in mucosal epithelium glycocalyx that decisively contribute to disease progression. Building on this knowledge, we examined patient series comprehending premalignant lesions, colorectal tumors, and healthy controls for the T-antigen-a short-chain O-glycosylation of proteins considered a surrogate marker of malignancy in multiple solid cancers. We found the T-antigen in the secretions of dysplastic lesions as well as in cancer. In CRC, T-antigen expression was associated with the presence of distant metastases. In parallel, we analyzed a broad number of stools from individuals who underwent colonoscopy, which showed high T expressions in high-grade dysplasia and carcinomas. Employing mass spectrometry-based lectin-affinity enrichment, we identified a total of 262 proteins, 67% of which potentially exhibited altered glycosylation patterns associated with cancer and advanced pre-cancerous lesions. Also, we found that the stool (glyco)proteome of pre-cancerous lesions is enriched for protein species involved in key biological processes linked to humoral and innate immune responses. This study offers a thorough analysis of the stool glycoproteome, laying the groundwork for harnessing glycosylation alterations to improve non-invasive cancer detection.


Assuntos
Neoplasias Colorretais , Lesões Pré-Cancerosas , Humanos , Neoplasias Colorretais/diagnóstico , Hiperplasia , Carcinogênese , Antígenos Virais de Tumores
2.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542435

RESUMO

Muscle-invasive bladder cancer (MIBC) remains a pressing health concern due to conventional treatment failure and significant molecular heterogeneity, hampering the development of novel targeted therapeutics. In our quest for novel targetable markers, recent glycoproteomics and bioinformatics data have pinpointed (glucose transporter 1) GLUT1 as a potential biomarker due to its increased expression in tumours compared to healthy tissues. This study explores this hypothesis in more detail, with emphasis on GLUT1 glycosylation patterns and cancer specificity. Immunohistochemistry analysis across a diverse set of human bladder tumours representing all disease stages revealed increasing GLUT1 expression with lesion severity, extending to metastasis, while remaining undetectable in healthy urothelium. In line with this, GLUT1 emerged as a marker of reduced overall survival. Revisiting nanoLC-EThcD-MS/MS data targeting immature O-glycosylation on muscle-invasive tumours identified GLUT1 as a carrier of short glycosylation associated with invasive disease. Precise glycosite mapping uncovered significant heterogeneity between patient samples, but also common glycopatterns that could provide the molecular basis for targeted solutions. Immature O-glycosylation conferred cancer specificity to GLUT1, laying the molecular groundwork for enhanced targeted therapeutics in bladder cancer. Future studies should focus on a comprehensive mapping of GLUT1 glycosites for highly specific cancer-targeted therapy development for bladder cancer.


Assuntos
Espectrometria de Massas em Tandem , Neoplasias da Bexiga Urinária , Humanos , Glicosilação , Transportador de Glucose Tipo 1/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Bexiga Urinária/patologia
3.
ACS Nano ; 18(14): 10088-10103, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38535625

RESUMO

Advanced-stage solid primary tumors and metastases often express mucin 16 (MUC16), carrying immature glycans such as the Tn antigen, resulting in specific glycoproteoforms not found in healthy human tissues. This presents a valuable approach for designing targeted therapeutics, including cancer glycovaccines, which could potentially promote antigen recognition and foster the immune response to control disease spread and prevent relapse. In this study, we describe an adjuvant-free poly(lactic-co-glycolic acid) (PLGA)-based nanoglycoantigen delivery approach that outperforms conventional methods by eliminating the need for protein carriers while exhibiting targeted and adjuvant properties. To achieve this, we synthesized a library of MUC16-Tn glycoepitopes through single-pot enzymatic glycosylation, which were then stably engrafted onto the surface of PLGA nanoparticles, generating multivalent constructs that better represent cancer molecular heterogeneity. These glycoconstructs demonstrated affinity for Macrophage Galactose-type Lectin (MGL) receptor, known to be highly expressed by immature antigen-presenting cells, enabling precise targeting of immune cells. Moreover, the glycopeptide-grafted nanovaccine candidate displayed minimal cytotoxicity and induced the activation of dendritic cells in vitro, even in the absence of an adjuvant. In vivo, the formulated nanovaccine candidate was also nontoxic and elicited the production of IgG specifically targeting MUC16 and MUC16-Tn glycoproteoforms in cancer cells and tumors, offering potential for precise cancer targeting, including targeted immunotherapies.


Assuntos
Nanopartículas , Neoplasias , Humanos , Lectinas/metabolismo , Glicosilação , Glicopeptídeos/metabolismo , Neoplasias/terapia , Neoplasias/metabolismo , Imunoterapia/métodos , Células Dendríticas
4.
J Control Release ; 367: 540-556, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301927

RESUMO

Cancer presents a high mortality rate due to ineffective treatments and tumour relapse with progression. Cancer vaccines hold tremendous potential due to their capability to eradicate tumour and prevent relapse. In this study, we present a novel glycovaccine for precise targeting and immunotherapy of aggressive solid tumours that overexpress CD44 standard isoform (CD44s) carrying immature Tn and sialyl-Tn (sTn) O-glycans. We describe an enzymatic method and an enrichment strategy to generate libraries of well-characterized cancer-specific CD44s-Tn and/or sTn glycoproteoforms, which mimic the heterogeneity found in tumours. We conjugated CD44-Tn-derived glycopeptides with carrier proteins making them more immunogenic, with further demonstration of the importance of this conjugation to overcome the glycopeptides' intrinsic toxicity. We have optimized the glycopeptide-protein maleimide-thiol conjugation chemistry to avoid undesirable cross-linking between carrier proteins and CD44s glycopeptides. The resulting glycovaccines candidates were well-tolerated in vivo, inducing both humoral and cellular immunity, including immunological memory. The generated antibodies exhibited specific reactivity against synthetic CD44s-Tn glycopeptides, CD44s-Tn glycoengineered cells, and human tumours. In summary, we present a promising prototype of a cancer glycovaccine for future therapeutical pre-clinical efficacy validation.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Vacinas Combinadas , Antígenos Glicosídicos Associados a Tumores/química , Glicoconjugados , Neoplasias/terapia , Imunoterapia , Glicopeptídeos/química , Proteínas de Transporte , Recidiva , Receptores de Hialuronatos
5.
Ecancermedicalscience ; 17: 1530, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138965

RESUMO

Introduction: Breast cancer (BC) is a public health problem in developing countries, including Cape Verde. Immunohistochemistry (IHC) is the gold standard technique used for BC phenotypic characterisation to support efficient therapeutic decisions. However, IHC is a demanding technique that requires knowledge, trained technicians, expensive antibodies and reagents, controls, and results validation. The low number of cases in Cape Verde increases the risk of expiring the validity of the antibodies, and manual procedures often jeopardise the quality of the results. Thus, IHC is limited in Cape Verde, and an alternative technically easy solution is needed. A point-of-care messenger RNA (mRNA) STRAT4 BC assay to assess estrogen (ER), progesterone (PR), hormone growth factor 2 receptor (HER2), and Ki67, using the GeneXpert platform, has been recently validated on tissues from internationally accredited laboratories, showing excellent concordance with IHC results.To assess whether this technology can be implemented in Cape Verde to guide BC treatment we decided to study the level of agreement between the findings yielded by BC STRAT4 and the results are the same cases obtained by IHC. Methods: Formalin-fixed and paraffin-embedded (FFPE) tissue samples from 29 Cabo Verdean BC patients diagnosed in Agostinho Neto University Hospital were analysed by applying IHC and BC STRAT4 assay. The time between sample collection and pre-analytic procedures is unknown. All the samples were pre-processed in Cabo Verde (fixed in formalin and embedded in paraffin). IHC studies were performed in referenced laboratories in Portugal. STRAT4 and IHC result concordance was assessed by calculating the percentage of results agreement and Cohen's Kappa (K) statistics. Results: STRAT4 assay failed in 2 out of the 29 analysed samples. Of the 27 successfully analysed samples, STRAT4/IHC results for ER, PR, HER2, and Ki67 were concordant in 25, 24, 25, and 18 cases, respectively. Ki67 was indeterminate in three cases, and PR was indeterminate once.The percentage of agreement between STRAT4 and IHC results for ER, PR, HER2, and Ki67 was 92.59%, 92.31%, 92.59% and 81.82%, respectively. The Cohen's K statistic coefficients for each biomarker were 0.809, 0.845, 0.757 and 0.506, respectively. Conclusions: According to our preliminary results, a point-of-care mRNA STRAT4 BC assay may be an alternative in laboratories unable to provide quality and/or cost-efficient IHC services. However, more data and improvement on sample pre-analytic processes are required to implement this BC STRAT4 Assay in Cape Verde.

6.
Theranostics ; 12(7): 3150-3177, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547758

RESUMO

Rationale: Bladder cancer (BC) management demands the introduction of novel molecular targets for precision medicine. Cell surface glycoprotein CD44 has been widely studied as a potential biomarker of BC aggressiveness and cancer stem cells. However, significant alternative splicing and multiple glycosylation generate a myriad of glycoproteoforms with potentially distinct functional roles. The lack of tools for precise molecular characterization has led to conflicting results, delaying clinical applications. Addressing these limitations, we have interrogated the transcriptome and glycoproteome of a large BC patient cohort for splicing signatures. Methods:CD44 gene and its splicing variants were assessed by Real Time-Polymerase Chain Reaction (RT-PCR) and RNAseq in tumor tissues. The co-localization of CD44 and short O-glycans was evaluated by proximity ligation assay (PLA), immunohistochemistry and double-immunofluorescence. An innovative glycoproteogenomics approach, integrating transcriptomics-customized datasets and glycomics for protein annotation from nanoLC-ESI-MS/MS experiments, was developed and implemented to identify CD44 variants and associated glycosignatures. The impact of CD44 silencing on proliferation and invasion of BC cell lines and glycoengineered cells was determined by BrdU ELISA and Matrigel invasion assays, respectively. Antibody phosphoarrays were used to investigate the role of CD44 and its glycoforms in the activation of relevant oncogenic signaling pathways. Results: Transcriptomics analysis revealed remarkable CD44 isoforms heterogeneity in bladder cancer tissues, as well as associations between short CD44 standard splicing isoform (CD44s), invasion and poor prognosis. We further demonstrated that targeting short O-glycoforms such as the Tn and sialyl-Tn antigens was key to overcome the lack of cancer specificity presented by CD44. Glycoproteogenomics allowed, for the first time, the comprehensive characterization of CD44 splicing code at the protein level. The concept was applied to invasive human BC cell lines, glycoengineered cells, and tumor tissues, enabling unequivocal CD44s identification as well as associated glycoforms. Finally, we confirmed the link between CD44 and invasion in CD44s-enriched cells in vitro by small interfering RNA (siRNA) knockdown, supporting findings from BC tissues. The key role played by short-chain O-glycans in CD44-mediated invasion was also demonstrated through glycoengineered cell models. Conclusions: Overall, CD44s emerged as biomarker of poor prognosis and CD44-Tn/ Sialyl-Tn (STn) as promising molecular signatures for targeted interventions. This study materializes the concept of glycoproteogenomics and provides a key vision to address the cancer splicing code at the protein level, which may now be expanded to better understand CD44 functional role in health and disease.


Assuntos
Neoplasias da Bexiga Urinária , Processamento Alternativo/genética , Linhagem Celular Tumoral , Feminino , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Masculino , Células-Tronco Neoplásicas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/metabolismo , Espectrometria de Massas em Tandem , Neoplasias da Bexiga Urinária/patologia
7.
Cells ; 11(3)2022 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-35159186

RESUMO

Gastrointestinal (GI) cancers constitute a group of highest morbidity worldwide, with colorectal cancer (CRC) and gastric cancer being among the most frequently diagnosed. The majority of gastrointestinal cancer patients already present metastasis by the time of diagnosis, which is widely associated with cancer-related death. Accumulating evidence suggests that epithelial-to-mesenchymal transition (EMT) in cancer promotes circulating tumor cell (CTCs) formation, which ultimately drives metastasis development. These cells have emerged as a fundamental tool for cancer diagnosis and monitoring, as they reflect tumor heterogeneity and the clonal evolution of cancer in real-time. In particular, EMT phenotypes are commonly associated with therapy resistance. Thus, capturing these CTCs is expected to reveal important clinical information. However, currently available CTC isolation approaches are suboptimal and are often targeted to capture epithelial CTCs, leading to the loss of EMT or mesenchymal CTCs. Here, we describe size-based CTCs isolation using the RUBYchip™, a label-free microfluidic device, aiming to detect EMT biomarkers in CTCs from whole blood samples of GI cancer patients. We found that, for most cases, the mesenchymal phenotype was predominant, and in fact a considerable fraction of isolated CTCs did not express epithelial markers. The RUBYchip™ can overcome the limitations of label-dependent technologies and improve the identification of CTC subpopulations that may be related to different clinical outcomes.


Assuntos
Neoplasias Gastrointestinais , Células Neoplásicas Circulantes , Biomarcadores Tumorais/genética , Transição Epitelial-Mesenquimal/genética , Humanos , Células Neoplásicas Circulantes/patologia , Fenótipo
8.
J Exp Clin Cancer Res ; 40(1): 191, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108014

RESUMO

BACKGROUND: Muscle invasive bladder cancer (MIBC) remains amongst the deadliest genitourinary malignancies due to treatment failure and extensive molecular heterogeneity, delaying effective targeted therapeutics. Hypoxia and nutrient deprivation, oversialylation and O-glycans shortening are salient features of aggressive tumours, creating cell surface glycoproteome fingerprints with theranostics potential. METHODS: A glycomics guided glycoproteomics workflow was employed to identify potentially targetable biomarkers using invasive bladder cancer cell models. The 5637 and T24 cells O-glycome was characterized by mass spectrometry (MS), and the obtained information was used to guide glycoproteomics experiments, combining sialidase, lectin affinity and bottom-up protein identification by nanoLC-ESI-MS/MS. Data was curated by a bioinformatics approach developed in-house, sorting clinically relevant molecular signatures based on Human Protein Atlas insights. Top-ranked targets and glycoforms were validated in cell models, bladder tumours and metastases by MS and immunoassays. Cells grown under hypoxia and glucose deprivation disclosed the contribution of tumour microenvironment to the expression of relevant biomarkers. Cancer-specificity was validated in healthy tissues by immunohistochemistry and MS in 20 types of tissues/cells of different individuals. RESULTS: Sialylated T (ST) antigens were found to be the most abundant glycans in cell lines and over 900 glycoproteins were identified potentially carrying these glycans. HOMER3, typically a cytosolic protein, emerged as a top-ranked targetable glycoprotein at the cell surface carrying short-chain O-glycans. Plasma membrane HOMER3 was observed in more aggressive primary tumours and distant metastases, being an independent predictor of worst prognosis. This phenotype was triggered by nutrient deprivation and concomitant to increased cellular invasion. T24 HOMER3 knockdown significantly decreased proliferation and, to some extent, invasion in normoxia and hypoxia; whereas HOMER3 knock-in increased its membrane expression, which was more pronounced under glucose deprivation. HOMER3 overexpression was associated with increased cell proliferation in normoxia and potentiated invasion under hypoxia. Finally, the mapping of HOMER3-glycosites by EThcD-MS/MS in bladder tumours revealed potentially targetable domains not detected in healthy tissues. CONCLUSION: HOMER3-glycoforms allow the identification of patients' subsets facing worst prognosis, holding potential to address more aggressive hypoxic cells with limited off-target effects. The molecular rationale for identifying novel bladder cancer molecular targets has been established.


Assuntos
Biomarcadores/metabolismo , Hipóxia Celular/genética , Glucose/metabolismo , Glicoproteínas/metabolismo , Proteínas de Arcabouço Homer/metabolismo , Proteômica/métodos , Neoplasias da Bexiga Urinária/genética , Proliferação de Células , Humanos , Transfecção , Microambiente Tumoral
9.
Int J Mol Sci ; 22(4)2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562270

RESUMO

Esophageal cancer (EC) is a life-threatening disease, demanding the discovery of new biomarkers and molecular targets for precision oncology. Aberrantly glycosylated proteins hold tremendous potential towards this objective. In the current study, a series of esophageal squamous cell carcinomas (ESCC) and EC-derived circulating tumor cells (CTCs) were screened by immunoassays for the sialyl-Tn (STn) antigen, a glycan rarely expressed in healthy tissues and widely observed in aggressive gastrointestinal cancers. An ESCC cell model was glycoengineered to express STn and characterized in relation to cell proliferation and invasion in vitro. STn was found to be widely present in ESCC (70% of tumors) and in CTCs in 20% of patients, being associated with general recurrence and reduced survival. Furthermore, STn expression in ESCC cells increased invasion in vitro, while reducing cancer cells proliferation. In parallel, an ESCC mass spectrometry-based proteomics dataset, obtained from the PRIDE database, was comprehensively interrogated for abnormally glycosylated proteins. Data integration with the Target Score, an algorithm developed in-house, pinpointed the glucose transporter type 1 (GLUT1) as a biomarker of poor prognosis. GLUT1-STn glycoproteoforms were latter identified in tumor tissues in patients facing worst prognosis. Furthermore, healthy human tissues analysis suggested that STn glycosylation provided cancer specificity to GLUT1. In conclusion, STn is a biomarker of worst prognosis in EC and GLUT1-STn glycoforms may be used to increase its specificity on the stratification and targeting of aggressive ESCC forms.


Assuntos
Antígenos Glicosídicos Associados a Tumores/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Transportador de Glucose Tipo 1/metabolismo , Proteoma/análise , Software , Antígenos Glicosídicos Associados a Tumores/química , Apoptose , Proliferação de Células , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Regulação Neoplásica da Expressão Gênica , Transportador de Glucose Tipo 1/química , Glicosilação , Humanos , Masculino , Pessoa de Meia-Idade , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Prognóstico , Estudos Prospectivos , Taxa de Sobrevida , Células Tumorais Cultivadas
10.
Cancer Lett ; 501: 210-223, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33212158

RESUMO

Tumour-associated macrophages have been implicated in pancreatic ductal adenocarcinoma (PDAC) therapy response and Extracellular vesicles (EVs) shed by macrophages might have a role in this process. Here, we demonstrated that large EVs released by anti-inflammatory human macrophages decreased PDAC cellular sensitivity to gemcitabine. Using proteomic analysis, chitinase 3-like-1 (CHI3L1) and fibronectin (FN1) were identified as two of the most abundant proteins in the cargo of macrophages-derived EVs. Overexpression of CHI3L1 and FN1, using recombinant human proteins, induced PDAC cellular resistance to gemcitabine through ERK (extracellular-signal-regulated kinase) activation. Inhibition of CHI3L1 and FN1 by pentoxifylline and pirfenidone, respectively, partially reverted gemcitabine resistance. In PDAC patient samples, CHI3L1 and FN1 were expressed in the stroma, associated with the high presence of macrophages. The Cancer Genome Atlas analysis revealed an association between CHI3L1 and FN1 gene expression, overall survival of PDAC patients, gemcitabine response, and macrophage infiltration. Altogether, our data identifies CHI3L1 and FN1 as potential targets for pharmacological inhibition in PDAC. Further pre-clinical in vivo work is warranted to study the possibility of repurposing pentoxifylline and pirfenidone as adjuvant therapies for PDAC treatment.


Assuntos
Carcinoma Ductal Pancreático/mortalidade , Proteína 1 Semelhante à Quitinase-3/metabolismo , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos , Vesículas Extracelulares/metabolismo , Fibronectinas/metabolismo , Macrófagos/metabolismo , Neoplasias Pancreáticas/mortalidade , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proteína 1 Semelhante à Quitinase-3/genética , Desoxicitidina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Vesículas Extracelulares/genética , Fibronectinas/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Pentoxifilina/farmacologia , Proteômica , Piridonas/farmacologia , Análise de Sobrevida , Regulação para Cima/efeitos dos fármacos , Gencitabina , Neoplasias Pancreáticas
11.
Front Oncol ; 10: 1774, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042825

RESUMO

Bladder cancer is the most common malignancy of the urinary tract, having one of the highest recurrence rates and progression from non-muscle to muscle invasive bladder cancer that commonly leads to metastasis. Cystoscopy and urine cytology are the standard procedures for its detection but have limited clinical sensitivity and specificity. Herein, a microfluidic device, the UriChip, was developed for the enrichment of urothelial exfoliated cells from fresh and frozen urine, based on deformability and size, and the cancer-associated glycan Sialyl-Tn explored as a putative bladder cancer urinary biomarker. Spiking experiments with bladder cancer cell lines showed an isolation efficiency of 53%, while clinical sample analyses revealed retention of cells with various morphologies and sizes. in situ immunoassays demonstrated significantly higher number of Sialyl-Tn-positive cells in fresh and frozen voided urine from bladder cancer patients, compared to healthy individuals. Of note, urothelial exfoliated cells from cryopreserved urine sediments were also successfully isolated by the UriChip, and found to express significantly high levels of Sialyl-Tn. Remarkably, Sialyl-Tn expression is correlated with tumor stage and grade. Overall, our findings demonstrate the potential of UriChip and Sialyl-Tn to detect urothelial bladder cancer cells in follow-up and long-term retrospective studies.

12.
Cancers (Basel) ; 12(4)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252346

RESUMO

BACKGROUND: Gastric cancer (GC) is a major health burden worldwide, with half of patients developing metastases within 5 years after treatment, urging novel biomarkers for diagnosis and efficient therapeutic targeting. Sialyl-Lewis A (SLeA), a terminal glycoepitope of glycoproteins and glycolipids, offers tremendous potential towards this objective. It is rarely expressed in healthy tissues and blood cells, while it is present in highly metastatic cell lines and metastases. SLeA is also involved in E-selectin mediated metastasis, making it an ideal target to control disease dissemination. METHODS AND RESULTS: To improve cancer specificity, we have explored the SLeA-glycoproteome of six GC cell models, with emphasis on glycoproteins showing affinity for E-selectin. A novel bioinformatics-assisted algorithm identified nucleolin (NCL), a nuclear protein, as a potential targetable biomarker potentially involved in metastasis. Several immunoassays, including Western blot and in situ proximity ligation reinforced the existence of cell surface NCL-SLeA glycoforms in GC. The NCL-SLeA glycophenotype was associated with decreased survival and was not reflected in relevant healthy tissues. CONCLUSIONS: NCL-SLeA is a biomarker of poor prognosis in GC holding potential for precise cancer targeting. This is the first report describing SLeA in preferentially nuclear protein, setting a new paradigm for cancer biomarkers discovery and targeted therapies.

13.
Theranostics ; 10(11): 4903-4928, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308758

RESUMO

Esophageal (OC), gastric (GC) and colorectal (CRC) cancers are amongst the digestive track tumors with higher incidence and mortality due to significant molecular heterogeneity. This constitutes a major challenge for patients' management at different levels, including non-invasive detection of the disease, prognostication, therapy selection, patient's follow-up and the introduction of improved and safer therapeutics. Nevertheless, important milestones have been accomplished pursuing the goal of molecular-based precision oncology. Over the past five years, high-throughput technologies have been used to interrogate tumors of distinct clinicopathological natures, generating large-scale biological datasets (e.g. genomics, transcriptomics, and proteomics). As a result, GC and CRC molecular subtypes have been established to assist patient stratification in the clinical settings. However, such molecular panels still require refinement and are yet to provide targetable biomarkers. In parallel, outstanding advances have been made regarding targeted therapeutics and immunotherapy, paving the way for improved patient care; nevertheless, important milestones towards treatment personalization and reduced off-target effects are also to be accomplished. Exploiting the cancer glycoproteome for unique molecular fingerprints generated by dramatic alterations in protein glycosylation may provide the necessary molecular rationale towards this end. Therefore, this review presents functional and clinical evidences supporting a reinvestigation of classical serological glycan biomarkers such as sialyl-Tn (STn) and sialyl-Lewis A (SLeA) antigens from a tumor glycoproteomics perspective. We anticipate that these glycobiomarkers that have so far been employed in non-invasive cancer prognostication may hold unexplored value for patients' management in precision oncology settings.


Assuntos
Antígenos Glicosídicos Associados a Tumores/metabolismo , Neoplasias Colorretais/diagnóstico , Neoplasias Esofágicas/diagnóstico , Medicina de Precisão , Antígeno Sialil Lewis X/metabolismo , Neoplasias Gástricas/diagnóstico , Glicômica/métodos , Glicoproteínas/metabolismo , Glicosilação , Humanos , Proteômica/métodos
14.
Int J Pharm ; 570: 118646, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31465836

RESUMO

Gastric cancer is the third leading cause of cancer-related death worldwide, with half of patients developing metastasis within 5 years after curative treatment. Moreover, many patients cannot tolerate or complete systemic treatment due severe side-effects, reducing their effectiveness. Thus, targeted therapeutics are warranted to improve treatment outcomes and reduce toxicity. Herein, poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with 5-fluorouracil (5-FU) and paclitaxel were surface-functionalized with a monoclonal antibody targeting sialyl-Lewis A (sLeA), a known glycan mediating hematogenous metastasis. Nanoparticles, ranging from 137 to 330 nm, enabled the controlled release of cytotoxic drugs at neutral and acid pH, supporting potential for intravenous and oral administration. Nanoencapsulation also reduced the initial toxicity of the drugs against gastric cells, suggesting it may constitute a safer administration vehicle. Furthermore, nanoparticle functionalization significantly enhanced targeting to sLeA cells in vitro and ex vivo (over 40% in comparison to non-targeted nanoparticles). In summary, a glycoengineered nano-vehicle was successfully developed to deliver 5-FU and paclitaxel therapeutic agents to metastatic gastric cancer cells. We anticipate that this may constitute an important milestone to establish improved targeted therapeutics against gastric cancer. Given the pancarcinomic nature of the sLeA antigen, the translation of this solution to other models may be also envisaged.


Assuntos
Fluoruracila/administração & dosagem , Fluoruracila/química , Nanopartículas/administração & dosagem , Nanopartículas/química , Paclitaxel/administração & dosagem , Paclitaxel/química , Neoplasias Gástricas/tratamento farmacológico , Anticorpos Monoclonais/química , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Linhagem Celular Tumoral , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Humanos , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química
15.
N Biotechnol ; 49: 77-87, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30273682

RESUMO

Circulating tumour cells (CTCs) originating from a primary tumour, lymph nodes and distant metastases hold great potential for liquid biopsies by providing a molecular fingerprint for disease dissemination and its temporal evolution through the course of disease management. CTC enumeration, classically defined on the basis of surface expression of Epithelial Cell Adhesion Molecule (EpCAM) and absence of the pan-leukocyte marker CD45, has been shown to correlate with clinical outcome. However, existing approaches introduce bias into the subsets of captured CTCs, which may exclude biologically and clinically relevant subpopulations. Here we explore the overexpression of the membrane protein O-glycan sialyl-Tn (STn) antigen in advanced bladder and colorectal tumours, but not in blood cells, to propose a novel CTC isolation technology. Using a size-based microfluidic device, we show that the majority (>90%) of CTCs isolated from the blood of patients with metastatic bladder and colorectal cancers express the STn antigen, supporting a link with metastasis. STn+ CTC counts were significantly higher than EpCAM-based detection in colorectal cancer, providing a more efficient cell-surface biomarker for CTC isolation. Exploring this concept, we constructed a glycan affinity-based microfluidic device for selective isolation of STn+ CTCs and propose an enzyme-based strategy for the recovery of viable cancer cells for downstream investigations. Finally, clinically relevant cancer biomarkers (transcripts and mutations) in bladder and colorectal tumours, were identified in cells isolated by microfluidics, confirming their malignant origin and highlighting the potential of this technology in the context of precision oncology.


Assuntos
Antígenos Glicosídicos Associados a Tumores/metabolismo , Biomarcadores Tumorais/metabolismo , Oncologia/métodos , Microfluídica/métodos , Células Neoplásicas Circulantes/metabolismo , Medicina de Precisão/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Separação Celular , Análise Mutacional de DNA , Molécula de Adesão da Célula Epitelial/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polissacarídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
16.
Sci Rep ; 8(1): 12196, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30111774

RESUMO

Incomplete O-glycosylation is a feature associated with malignancy resulting in the expression of truncated glycans such as the sialyl-Tn (STn) antigen. Despite all the progress in the development of potential anti-cancer antibodies, their application is frequently hindered by low specificities and cross-reactivity. In this study, a novel anti-STn monoclonal antibody named L2A5 was developed by hybridoma technology. Flow cytometry analysis showed that L2A5 specifically binds to sialylated structures on the cell surface of STn-expressing breast and bladder cancer cell lines. Moreover, immunoblotting assays demonstrated reactivity to tumour-associated O-glycosylated proteins, such as MUC1. Tumour recognition was further observed using immunohistochemistry assays, which demonstrated a high sensitivity and specificity of L2A5 mAb towards cancer tissue, using bladder and colorectal cancer tissues. L2A5 staining was exclusively tumoural, with a remarkable reactivity in invasive and metastasis sites, not detectable by other anti-STn mAbs. Additionally, it stained 20% of cases of triple-negative breast cancers, suggesting application in diseases with unmet clinical needs. Finally, the fine specificity was assessed using glycan microarrays, demonstrating a highly specific binding of L2A5 to core STn antigens and additional ability to bind 2-6-linked sialyl core-1 probes. In conclusion, this study describes a novel anti-STn antibody with a unique binding specificity that can be applied for cancer diagnostic and future development of new antibody-based therapeutic applications.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/uso terapêutico , Antígenos Glicosídicos Associados a Tumores/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Antígenos Glicosídicos Associados a Tumores/fisiologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Glicosilação , Humanos , Hibridomas , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Neoplasias/metabolismo , Polissacarídeos/química , Polissacarídeos/imunologia , Ácidos Siálicos/metabolismo , Neoplasias da Bexiga Urinária/patologia
17.
Talanta ; 184: 347-355, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29674052

RESUMO

Bladder Cancer (BC) presents one of the highest recurrence rates amongst solid tumours and constitutes the second deadliest disease of the genitourinary track. Non-invasive identification of patients facing disease recurrence and/or progression remains one of the most critical and challenging aspects in disease management. To contribute to this goal, we demonstrate the potential of glycan-affinity glycoproteomics nanoplatforms for urinary biomarkers discovery in bladder cancer. Briefly, magnetic nanoprobes (MNP) coated with three broad-spectrum lectins, namely Concanavalin A (ConA; MNP@ConA), Wheat Germ Agglutinin (WGA; MNP@WGA), and Sambucus nigra (SNA; MNP@SNA), were used to selectively capture glycoproteins from the urine of low-grade and high-grade non-muscle invasive as well as muscle-invasive BC patients. Proteins were identified by nano-LC MALDI-TOF/TOF and data was curated using bioinformatics tools (UniProt, NetOGlyc, NetNGlyc, ClueGO app for Cytoscape and Oncomine) to highlight clinically relevant species. Accordingly, 63 glycoproteins were exclusively identified in cancer samples compared with healthy controls matching in age and gender. Specific glycoprotein sets exclusively found in low-grade non-muscle invasive bladder tumours may aid early diagnosis, while those only found in high-grade non-invasive and muscle-invasive tumours hold potential for accessing progression. Amongst these proteins is bladder cancer stem-cell marker CD44, which has been associated with poor prognosis. Orthogonal validation studies by slot-blotting demonstrated an elevation in urine CD44 levels of high-grade patients, which became more pronounced upon muscle-invasion, in mimicry of the primary tumour. These observations demonstrate the potential of MNP@lectins for identification of clinically relevant glycoproteomics signatures in bladder cancer. Future clinical validation in a larger and well characterized patient subset is required envisaging clinical translation of the results.


Assuntos
Biomarcadores Tumorais/urina , Glicoproteínas/urina , Nanopartículas de Magnetita/química , Polissacarídeos/química , Neoplasias da Bexiga Urinária/urina , Idoso , Idoso de 80 Anos ou mais , Humanos , Masculino , Pessoa de Meia-Idade , Ácidos Siálicos/análise
18.
Urol Oncol ; 35(12): 675.e1-675.e8, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28911924

RESUMO

OBJECTIVES: To evaluate the potential of sialyl-Tn (STn), a cancer-associated glycan antigen present in membrane glycoproteins, to improve a recent molecular model for stratification and prognostication of advanced stage bladder tumors based on keratins (KRT14, 5, and 20) expression. In addition, determine the association between STn and disease dissemination based on the evaluation of circulating tumor cells (CTCs) and the metastasis, which is a critical matter to improve patient management. PATIENTS AND METHODS: A retrospective series of 80 muscle-invasive primary bladder tumors and associated metastasis were screened for KRT14, 5, and 20 and STn by real-time polymerase chain reaction and immunohistochemistry. Peripheral blood was collected in a patients' subset, CTCs were isolated through a size-based microfluidic chip and screened for KRTs and STn. RESULTS: Basal-like lesions presented worse cancer-specific and disease-free survival compared to luminal tumors. STn antigen inclusion discriminated patients with worst survival in each subgroup (P = 0.047 for luminal; P = 0.027 for basal-like tumors). STn expression in CTCs and distant metastasis was also demonstrated. CONCLUSION: This work reinforces the potential of the KRT-based model for bladder cancer management and the association of STn with aggressiveness, supporting its inclusion in predictive molecular models toward patient-tailored precision medicine. Moreover, we describe for the first time that CTCs and the metastasis present a basal phenotype and express the STn antigen, highlighting its link with disease dissemination. Future studies should focus on determining the biological and clinical significance of these observations in the context of liquid biopsies. Given the membrane nature of STn, highly specific targeted therapeutics may also be envisaged.


Assuntos
Antígenos Glicosídicos Associados a Tumores/biossíntese , Células Neoplásicas Circulantes/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Bexiga Urinária/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Queratina-14/genética , Queratina-20/genética , Queratina-5/genética , Masculino , Pessoa de Meia-Idade , Músculos/patologia , Invasividade Neoplásica , Células Neoplásicas Circulantes/patologia , Estudos Retrospectivos , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/sangue , Neoplasias da Bexiga Urinária/genética
19.
Mol Oncol ; 11(8): 895-912, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28156048

RESUMO

Bladder carcinogenesis and tumour progression is accompanied by profound alterations in protein glycosylation on the cell surface, which may be explored for improving disease management. In a search for prognosis biomarkers and novel therapeutic targets we have screened, using immunohistochemistry, a series of bladder tumours with differing clinicopathology for short-chain O-glycans commonly found in glycoproteins of human solid tumours. These included the Tn and T antigens and their sialylated counterparts sialyl-Tn(STn) and sialyl-T(ST), which are generally associated with poor prognosis. We have also explored the nature of T antigen sialylation, namely the sialyl-3-T(S3T) and sialyl-6-T(S6T) sialoforms, based on combinations of enzymatic treatments. We observed a predominance of sialoglycans over neutral glycoforms (Tn and T antigens) in bladder tumours. In particular, the STn antigen was associated with high-grade disease and muscle invasion, in accordance with our previous observations. The S3T and S6T antigens were detected for the first time in bladder tumours, but not in healthy urothelia, highlighting their cancer-specific nature. These glycans were also overexpressed in advanced lesions, especially in cases showing muscle invasion. Glycoproteomic analyses of advanced bladder tumours based on enzymatic treatments, Vicia villosa lectin-affinity chromatography enrichment and nanoLC-ESI-MS/MS analysis resulted in the identification of several key cancer-associated glycoproteins (MUC16, CD44, integrins) carrying altered glycosylation. Of particular interest were MUC16 STn+ -glycoforms, characteristic of ovarian cancers, which were found in a subset of advanced-stage bladder tumours facing the worst prognosis. In summary, significant alterations in the O-glycome and O-glycoproteome of bladder tumours hold promise for the development of novel noninvasive diagnostic tools and targeted therapeutics. Furthermore, abnormal MUC16 glycoforms hold potential as surrogate biomarkers of poor prognosis and unique molecular signatures for designing highly specific targeted therapeutics.


Assuntos
Glicoproteínas/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Proteínas de Neoplasias/metabolismo , Proteômica , Neoplasias da Bexiga Urinária/metabolismo , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias da Bexiga Urinária/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...